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Abstract

In recent years, the convergence of computer vision and computer graphics has put forth a

new field of research that focuses on the reconstruction of real-world scenes from video

streams. To make immersive 3D video reality, the whole pipeline spanning from scene acqui-

sition over 3D video reconstruction to real-time rendering needs to be researched. In this

paper, we describe latest advancements of our system to record, reconstruct and render

free-viewpoint videos of human actors. We apply a silhouette-based non-intrusive motion cap-

ture algorithm making use of a 3D human body model to estimate the actor�s parameters of

motion from multi-view video streams. A renderer plays back the acquired motion sequence in

real-time from any arbitrary perspective. Photo-realistic physical appearance of the moving

actor is obtained by generating time-varying multi-view textures from video. This work shows

how the motion capture sub-system can be enhanced by incorporating texture information

from the input video streams into the tracking process. 3D motion fields are reconstructed

from optical flow that are used in combination with silhouette matching to estimate pose

parameters. We demonstrate that a high visual quality can be achieved with the proposed

approach and validate the enhancements caused by the the motion field step.
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1. Introduction

Recent developments in media technology show that there is a strong interest of

the entertainment industry to enhance the classic 2D video into an immersive and

interactive 3D medium. The ultimate goal is to create a feeling of immersion by en-

abling the viewer to choose an arbitrary viewpoint onto the scene in real-time and

without loss of visual quality. The range of applications for this technology will

be manifold and will allow impressive effects such as virtual fly-arounds in sports vid-

eos or actor-dependent viewpoint selection in interactive movies.
Human actors are the central elements of motion picture scenes, and the human

visual system is very sensitive to the slightest inaccuracies in a human�s motion and

look. In consequence, the synthesis of realistic images of humans in motion is a chal-

lenging problem in computer graphics. Two aspects of this problem are the creation

of natural human motion and the accurate rendering of a person�s appearance. Com-

bining the small scale details of skin, muscle, and cloth movement with the large-

scale motions of the body into one realistic image has required the development of

new techniques which rely on the strengths of both computer vision and computer
graphics. Many conventional methods for estimating motion parameters are intru-

sive, requiring optical markers or complex mechanical setups, and thus require a sep-

aration of the generation of realistic motion from the generation of realistic

appearance. However, in the field of computer vision, numerous techniques have

been developed for non-intrusive motion parameter estimation. Incorporating some

of these techniques into computer graphics allows us to capture body appearance

and motion at the same time, vastly simplifying the problem of novel image

synthesis.
We have developed a method which non-intrusively estimates motion parameters

using silhouette information [5]. This method employs a detailed geometric body

model and uses features of latest-generation commodity graphics hardware to esti-

mate pose parameters. The estimation is performed by optimizing the overlap be-

tween the model silhouette and the silhouettes obtained from multi-view video

data. Due to its compartmentalized nature the estimation algorithm lends itself to

a parallel implementation.

The reconstructed scene is rendered at video frame rate and allows the viewer to
change its viewpoint freely and in real-time. For rendering, the body model is tex-

tured with high-detail time-varying textures that are created from the video data

by means of image-based techniques.

We have previously demonstrated that a broad range of complex and rapid body

motion is robustly captured using silhouette-based techniques [5]. However,

improvements are possible in those portions of the body with small-scale details

(such as features of the face) whose visual appearance is erroneous due to small pose

inaccuracies. To be maximally effective, we enhanced our original silhouette-based
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tracking algorithm into a hybrid approach that makes use of all available informa-

tion. We propose to use texture information to augment the silhouette-fitting

process.

Optical flow reconstruction is a computer vision technique that employs texture

information to compute a 2D motion field in the image plane. Making use of optical
flow calculations from multiple input views and an a priori body model, it becomes

possible to construct a 3D motion field which estimates body motion. We present a

method for extracting hierarchical rigid body transformations from these motion

fields and show that it is used best in conjunction with, and not in place of, silhou-

ette-based tracking.

We demonstrate that this new hybrid method improves motion parameter estima-

tion and, consequently, that it has a significant impact on the quality of generated

free-viewpoint video sequences.
This article proceeds with an overview of related work in Section 2, which is fol-

lowed by a general overview of our free-viewpoint video system in Section 3. The

main functional components and algorithmic ingredients are outlined in the sections

thereafter, beginning with the acquisition setup for multi-view video streams in Sec-

tion 4. Adaptable body model and multi-view texture generation are presented in

Sections 5 and 7, respectively, and the silhouette fitting step in our motion capture

algorithm is described in Section 6. The theoretical foundations of optical flow esti-

mation and the reconstruction of 3D motion fields from 2D flows are presented in
Section 8. The nuts and bolts of how to compute differential pose update parameters

from 3D flow fields are explained in Section 9. Graphical results and a validation of

visual improvements by the motion field step are presented in Section 10, and the

paper concludes with an outlook in Section 11.
2. Related work

In the scientific literature the problems of capturing human motion from video

data and of realistic rendering from novel viewpoints have rarely been tackled in tan-

dem. In computer vision, non-intrusive optical human motion capture has been an

active field of research for a long time (see [9,22] for comprehensive reviews). Some

methods work on a single 2D image and apply, for example, frame differencing [16]

or image skeletonization [12] to fit simple body models to human motion. 3D human

motion capture approaches typically employ an explicit human body model consist-

ing of a joint structure and some form of surface representation. Simple shape prim-
itives, such as cylinders [13,26] or superquadrics [10], are commonly used to represent

limbs. The body models are fitted to the motion by aligning their projection with fea-

tures in the image plane, such as image discontinuities. The application of silhouette

images for human motion capture has also been considered. In [7] a force field ex-

erted by multiple image silhouettes aligns a 3D body model. In [24] a combination

of stereo and silhouette fitting is used to fit a human body model, and in [5] a silhou-

ette-based motion estimation method is described that exploits graphics hardware to

maximize model and silhouette overlap. Recently, the application of reconstructed
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volumetric models (visual hulls) from silhouettes of a moving person for motion

capture has also been considered. Ellipsoidal body models [6], kinematic skeletons

[20], or skeleton models with attached volume samples [32] are fitted to the volume

data.

Recently, Sand et al. [27] have presented a novel method for estimating human
body motion and a deformable skin model. They simultaneously record silhouette

images and capture motion parameters with a marker-based system in order to esti-

mate a mapping from pose parameter space to the space of skin deformations.

The intent to lay the foundations for the next generation of electronic visual med-

ia has brought together researchers from vision and graphics in the field of 3D video.

In 3D video, dynamic models of scenes that are recorded from several camera per-

spectives are reconstructed and rendered from novel viewpoints. Examples of meth-

ods that are used to approach that problem are shape-from silhouette-like
approaches, such as the visual hull [21,38], stereo-based approaches [23] or a combi-

nation of both [28]. Ray-space methods from image-based rendering that approxi-

mate the plenoptic function [1] in a scene, such as the lightfield [18] or the

Lumigraph [11], can also be considered to be part of the same effort. However, their

immense memory requirements and the necessary sampling density demand large

camera arrays and huge data storage systems in order to record dynamic scenes [37].

None of the previously mentioned approaches explicitly uses optical flow or incor-

porates 3D velocity fields into motion parameter estimation or scene reconstruction.
The optical flow is the observed 2D motion field in the image plane of a camera

resulting from the projection of the 3D velocity field of the recorded moving scene

(see [2] for a comparison of optical flow algorithms). The application of 2D optical

flow has been investigated in model-based video coding for deriving facial animation

parameters of a generic head model [8] or for recovering motion parameters of a

body model in a teleconferencing scenario [17]. Using optical flow in one or more

camera views for full body human motion estimation is presented in [4]. In their

work, the authors use a twist parameterization for rigid body transformations to
determine the body pose parameters from 2D information directly by solving a linear

system. The algorithm computes pose updates and performs image warping in an

iterative procedure. None of these methods explicitly reconstruct a 3D motion field.

In [35], an algorithm for computing such a 3D motion field from optical flows in

multiple camera views is presented. It has been used to improve voxel-based scene

reconstruction [36] and to compute models of intermediate time steps in a sequence

of shape-from-silhouette representations [34]. Unfortunately, the methods employ-

ing optical flow exhibit robustness problems if the typical optical flow assumptions
such as brightness constancy over time and smoothness in a spatial neighborhood

are not fulfilled. This happens very easily if the motion in the scene is very rapid

and effects such as self-shadowing come into play.

In our work we combine into a single framework techniques that were previously

investigated separately. We demonstrate that the combination of a silhouette-based

human motion capture algorithm and multi-view texture generation forms a power-

ful tool for acquisition and realisic rendering of 3D videos of human actors [5]. Fur-

thermore, we describe a method that uses a 3D motion field reconstructed from
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optical flow to update pose parameters computed via a silhouette-based model fitting

procedure [30]. By this means, we combine the strengths of silhouette-based fitting

for robust acquisition of a large range of motions with that of motion estimation

from texture information for robust computation of small-scale pose corrections.

Using texture information, pose updates can be recovered on a small scale.
3. The big picture

In Fig. 1, an overview of the proposed free-viewpoint video system is shown. It is

functionally separated into an offline and an online component, the former one com-

prising the acquisition and motion capture sub-systems, the latter one consisting of

the real-time free-viewpoint renderer.
The system takes synchronized multi-view video streams as input and computes

the silhouette of the person in each video frame via background subtraction. In an

initialization step, the employed body model is adapted to the physical shape of

the recorded person. At every time step, the system computes multi-view textures

for the body model from the video images using image-based techniques (Section

7). After initialization, the motion capture algorithm iteratively estimates the body

pose parameters for each time step. The described motion capture algorithm imple-

ments a two-step predictor-corrector scheme. Considering an arbitrary time step
t + 1, the motion capture algorithm works as follows. Starting with a body pose Pt

recovered for time step t, the system first computes an estimate of the pose parameters

P 0
sil;tþ1 at time t + 1 by optimizing the overlap between the projected model and the

silhouette images in all camera views. In a second step, estimate P 0
sil;tþ1 is augmented
Fig. 1. Overview of the functional units of the free-viewpoint video system. The system consists of an

online (light gray background) and an offline component (darker gray). The elements of the motion

capture sub-system are shown in the rounded box.
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by computing a 3D corrective motion field from optical flows. The model standing in

pose P 0
sil;tþ1 and textured with the video images from time t is rendered into all camera

views. The images of the back-projected model form a prediction of the person�s
appearance at t + 1. The optical flows are computed for each pair of back-projected

model view and corresponding segmented video frame at time t + 1.
The reconstructed motion field provides an estimate of the correct positions of the

limbs of the body model to be conform with the acquired image data. From the mo-

tion field we compute a least-squares differential pose update, Pdiff,t+1, i.e., a set of

pose parameters that are added to P 0
sil;tþ1 to form the final pose estimate Pt+1 for time

t+1. The final pose parameter estimate serves as a starting point in the next iteration.

Once the pose parameters for all time steps are obtained, they are saved into a 3D

video file that may be played back from arbitrary perspectives in real-time. The ren-

derer displays the body model in the sequence of recovered body poses and creates
the realistic surface appearance by generating multi-view textures from video.
4. Multi-view video acquisition

The video sequences used as input to our system are recorded in our multi-view

video studio [31]. IEEE1394 cameras are placed in a convergent setup around the

center of the scene. The video sequences used for this paper are recorded from 8 sta-
tic viewing positions arranged at approximately equal angles and distances around

the center of the room. The cameras are synchronized via an external trigger, and

all the video data are directly streamed to hard drives by the four control PCs, each

of which is connected to two cameras. Video frames are recorded at a resolution of

320 · 240 at 15 fps. The frame rate is fundamentally limited to 15 fps by the camera

hardware�s external trigger capabilities. Using Tsai�s algorithm [33], the cameras�
intrinsic and extrinsic parameters are determined, calibrating every camera into

one common global coordinate system. The lighting conditions are controlled and
all cameras are color-calibrated.

In each video frame, the person in the foreground is segmented via background

subtraction. The algorithm employs per-pixel color-statistics to generate silhouettes

[6]. Shadow regions that might lead to an incorrect classification of background pix-

els as foreground are eliminated via an additional threshold on pixel hue values.
5. Adaptable body model

The body model used is a generic model consisting of a hierarchic arrangement of

16 body segments (head, upper arm, torso, etc.), each of which is represented by a

closed triangle mesh (see Fig. 2 and Fig. 4). In total, the surface geometry consists

of 21422 triangles. The model�s kinematics are defined via an underlying skeleton

consisting of 17 joints connecting bone segments. Rigid transformations at each of

these joint locations define a specific body pose for the model. These transformations

are constrained to imitate the actual motions of the body. Shoulder and hip joints



Fig. 2. Exclusive-or operation (XOR) of model and image silhouette (l), body model with underlying

kinematic skeleton in recovered body pose (m), and textured body model (r).
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are represented by 3 degree-of-freedom (DOF) ball joints, and elbow and knee joints

are represented by 1-DOF hinge joints. In total, 35 parameters are needed to com-

pletely define a body pose. While the actor stands in a specific initialization pose,

the generic body model shape is adjusted to that of the person through a silhou-
ette-based fitting process. Shape-adaptation of the body model is achieved by adjust-

ing body pose parameters and additional scaling parameters in an iterative

procedure that converges when optimal conformance of model shape and silhouette

images is reached [5]. From this point on, bone lengths and segment geometry are

fixed and motion parameter estimation is performed using a combination of silhou-

ette and motion field information.
6. Silhouette-based model fitting

For each new time step of video, the motion capture sub-system begins with the

computation of a set of pose parameters P 0
sil;tþ1 that maximizes the overlap between

the projected model and the input silhouettes. These pose parameters are found by

means of a hierarchical non-linear optimization procedure which is initialized using

the pose parameters Pt that were found in the preceding time step. The error function

that drives motion capture is a per-pixel XOR-operation between the projected mod-
el silhouettes and input silhouettes in each camera view (Fig. 2). It can be efficiently

computed using current consumer graphics hardware. The pose parameters are

found by solving a sequence of optimization problems on subsets of the parameter

space. Following the skeleton hierarchy, the pose parameters of the model�s root

joint, located in the torso segment, are found first. Thereafter, the poses of arms, legs

and head are derived and finally the poses of the feet and hands are computed [5].

Recent results show that the silhouette fitting algorithm can be significantly sped

up by implementing it as a distributed client-server system [29]. In this parallel imple-
mentation, four client PCs and one server PC are used. The independence of poses of

body parts on the same level of the skeleton hierarchy, e.g., arms, legs, and head, can

be exploited in the parallel implementation. Instead of computing the pose parame-

ters of each arm, each leg, and the head sequentially on a single machine, their poses

can be found on five different machines in parallel. The same goes for hands and feet.

Following the skeleton hierarchy top to bottom, the server starts by finding the root
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parameters. On the next two hierarchy levels the work is distributed among the five

GPUs and CPUs. A further speedup of the XOR evaluation is gained by considering

only sub-regions of the image plane and by excluding unchanging model parts from

rendering. In this work, the silhouette-based model fitting is used for robust predic-

tion of pose parameters.
7. Multi-view texture generation

For any body pose, it becomes possible to generate a textured body model by pro-

jecting the input camera views onto the body model surface using programmable

graphics hardware. The degree towhich a specific input view is visible at a given surface

location is variable. Per-vertex blending weights are computed based on visibility and
the difference in direction between the vertex normal and the input view vector. Ref. [5]

addresses texture generation for the purpose of novel viewpoint generation. We make

use of texture generation for both rendering andmotion parameter estimation. This re-

quires a slight modification. When rendering the textured model for motion field com-

putation, the texture coordinates generated from the previous time step are used.
8. Fundamentals of optical flow and its 3D equivalent

This section briefly reviews the mathematical preliminaries of optical flow and the

reconstruction of 3D motion fields.

8.1. 2D optical flow

The optical flow is the projection of the 3D velocity field of a moving scene into

the 2D image plane of a recording camera. The determination of the 2D optical flow
from spatio-temporal intensity variations in images has been investigated in com-

puter vision for many years [2].

A number of simplifying assumptions are typically made to compute the optical

flow from the pixel intensities of two subsequent images. First, it is assumed that

the change in image intensity is due to translation in the image plane only (intensity

constancy constraint)

Iðx; tÞ ¼ Iðx� ot; 0Þ; ð1Þ
where o = (p, q)T is the optical flow at image point x, I being the image intensity at

coordinates x and time t. From the Taylor expansion of (1) and linearization, the

optical flow constraint equation is derived

rIðx; tÞ � oþ I tðx; tÞ ¼ 0; ð2Þ
where It (x,t) is the temporal derivative. This is an equation in two unknowns which
cannot be solved at a single image plane location without additional assumptions.

Hence, it is common practice to make additional assumptions about the smoothness
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of the optical flow field in a local spatial neighborhood to make the problem

well-posed.

In the optical flow approach by Lucas and Kanade [19], a weighted least-squares

fit to the local first-order constraints (2) is computed by minimizing the functional
X
x2W

W 2ðxÞ½rIðx; tÞ � oþ I tðx; tÞ�2; ð3Þ

where W (x) defines a Gaussian neighborhood around the current position x in the

image plane. We use this technique in our system.

8.2. 3D motion fields

The optical flow observed by a camera is only a 2D-projection of the real world

3D motion field. The goal of motion capture is the recovery of the parameters of 3D

motion. A reconstructed 3D motion field from optical flows in multiple camera views

can be used to compute these parameters. The reconstruction of the 3D motion field,

also know as the scene flow, from the 2D optical flows is possible using a technique

described in [35].

If correspondences in the image plane are known, i.e., it is known to which image

coordinates 3D points project in each camera view, the scene flow can be recon-
structed by solving a linear system of equations. In our system, the correspondences

are known for each vertex because we have an explicit body model and the projec-

tion matrices Pi for each recording camera i are known. The projection matrices de-

scribe the relationship between a 3D position of a vertex and its projection into the

image plane of the camera, ui = (ui, vi)
T.

The differential relationship between the vertex x with coordinates (x, y, z)T and ui
is described by the 2 · 3 Jacobian matrix J i ¼ oui

oxi

dui

dt
¼ J i

dx

dt
: ð4Þ

In other words, the Jacobian describes the relationship between a small change in 3D

position of a vertex, and the change of its projected image in camera i. The term dui
dt is

the optical flow observed in camera i, dx
dt is the corresponding scene flow of the vertex

(Fig. 3). Having a mathematical camera model, the Jacobian can be computed ana-

lytically (see [35]).
Fig. 3. 3D motion (scene flow) of a surface point and the corresponding observed optical flows in two

camera views.



Fig. 4. Body model showing the separate hierarchy levels.
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If a vertex is visible from at least two camera views, an equation system of the
form B dx

dt ¼ U can be formulated to solve for the scene flow of this vertex given

the optical flows in all camera views

B ¼

ou1
ox

ou1
oy

ou1
oz

ov1
ox

ov1
oy

ov1
oz
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�
�
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ot
ovN
ot

2
6666666664

3
7777777775

; ð5Þ

where N is the number of camera views. A least-squares solution to this equation sys-
tem can be found via singular value decomposition (SVD) [25].
9. Body pose update using 3D motion fields

Many assumptions in optical flow algorithms, such as the brightness constancy

assumption and the assumption that the visibility does not change in subsequent

images, often break down if the motion in the scene is very fast. In rapidly moving
scenes, illumination changes may cause strong differences in the appearance of iden-

tical surface elements in two subsequent video frames, and occlusions or disocclu-

sions of parts of a scene are very likely to occur. We concede that a purely

motion-field-based tracking system is suitable for a slowly moving subject only.

However, by combining optical flow and silhouette information, it becomes possible

to bypass some of the limitations of optical flow reconstruction and capture com-

plex, fast motions of the body. A motion field describes the motion of a scene be-

tween two time instants. In contrast, our corrective motion field describes the
corrective motion between a first pose estimate at one time instant obtained via sil-
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houette-based tracking and the correct pose for the same time instant if texture infor-

mation is taken into account. These motions are small translations and rotations

which properly align the model with the input video footage.

We apply the previously described scene flow reconstruction algorithm to com-

pute a corrective motion field at each time step. Let Ij,t be the jth input camera view
at time t, and Pt be the model pose at time t. The algorithm then proceeds as follows:

� With Pt as the starting point, use silhouette fitting to compute P 0
sil;tþ1, which is an

estimated pose for time t+1.

� Generate I 0j;tþ1 by rendering the model from camera j in pose P 0
sil;tþ1 with texture

from time t.

� Computation of corrective motion field D: For each model vertex

– Determine the projection of the vertex into each camera’s image plane.
– Determine vertex visibility in all cameras by comparing the projected z-coordi-

nate to the OpenGL z-buffer value.

– If a vertex is visible from camera j, compute the optical flow between images

I 0j;tþ1 and Ij,t+1.

– If a vertex is visible in at least three camera views (more robust reconstruction

than with minimum number of two views), compute a least squares solution to

an equation system of the form as in (5) by applying an SVD as described in

Section 8.2.
� Update P 0

sil;tþ1 to conform with motion field to yield Pt+1.

The computed corrective 3D motion field D describes vertex position updates that

correct slight inaccuracies in the result of the silhouette step. Fig. 6 shows an example

of a corrective flow field and the corresponding updated body pose. The remainder

of the section describes the derivation of the differential pose updates from P 0
sil;tþ1 to

Pt+1 using D.

9.1. Differential pose update

The corrective motion field D can be used to compute differential pose parameter

updates for each limb of the body model. For the root, which is located in the torso

segment, three differential rotation and three differential translation parameters are

computed. All other joints are purely rotational. This includes 3-DOF rotations for

the shoulders, hips, and neck, and a 1-DOF rotation for the elbows and knees. Wrist

and ankle joints are currently not considered.
By adding each vector in D to the current 3D position of its corresponding vertex,

a set of goal positions is defined for each model vertex. The goal is to find the set of

differential joint parameters of the body model that best aligns the vertices with these

positions. The idea is to compute the differential pose parameter updates for every

joint only from the goal positions of the vertices of the attached body segment,

e.g., using the upper arm goal positions to find the shoulder parameters.

Both our artificial body model and the real human body are hierarchical

kinematic chains. This implies that transformations of joints lower in the hierarchy
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involve all transformation of preceding joints, too. Taking this into account, we

solve for the differential model parameters for one hierarchy level of the model at

a time, proceeding from top to bottom (level 1 being the highest level, see Fig. 4).

After the pose updates for a higher level are found, the model parameters on this le-

vel are updated, leaving all lower levels unchanged. The algorithm proceeds to the
next lower level. This method assures that the computed differential update corre-

sponds only to a joint transformation on each level.

9.1.1. Registration method for pose update

Finding a pose update for a joint corresponds to finding a coordinate system

transformation between two point sets, a problem know as the absolute orientation

problem in photogrammetry [14]. For each joint, one point set consists of the current

3D vertex positions of the attached body segment. The second point set defines the
goal locations for each vertex in 3D space.

Horn [15] describes a closed form solution to the absolute orientation problem,

henceforth referred to as the registration method. In his work, Horn uses quater-

nions to parameterize rotations. All transformations are computed with respect to

the centers of gravity of both point sets. Let x1,i and x2,i, i = {1, . . . ,N} be corre-

sponding points from two point sets, then the solution to the absolute orientation

problem in the least-squares sense are the rotation R and translation c that minimize

the error function

XN
i

x2;i � Rx1;i � ck k2: ð6Þ

It is shown that the optimal translation c is defined by the difference between the cen-

troid of set 2 and the rotated centroid of set 1. To find the optimal rotation, the coor-

dinates of the points in both point sets are defined relative to their center of gravity,

respectively. It can be shown that the optimal rotation in the sense of (6) can be

found by maximizing

XN
i

x2;i � Rx1;i: ð7Þ

The maximal solution to (7) can efficiently be computed in closed-form using a qua-

ternion parameterization q of the rotation. A quaternion can be regarded as a com-
plex number with one real component and three imaginary components,

q = q0 + qxix + qyiy + qziz, and can be represented by a 4-component vector. Rota-

tions can be represented by unit quaternions. A detailed description of quaternions

is beyond the scope of this paper, hence we refer the reader to the paper by Horn

[15].

Using quaternions, the sum (7) can be transformed into the form

qTNq: ð8Þ
The matrix N contains entries that are only made up of products of coordinates of
corresponding points in the two point sets that need to be registered (see Appendix).
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The rotation q that maximizes this sum is the eigenvector that corresponds to the

largest eigenvalue of the symmetric 4 · 4-matrix N. The solution q is a unit vector

in the same direction as the eigenvector.

We apply the registration method to compute differential pose updates as follows.

The adjustment starts at hierarchy level 1 with the root of the model. To find the cor-
rective model update of the root joint, a differential rotation and translation is com-

puted using the torso segment start and destination positions computed from D. The

rotation component is computed by applying the previously described registration

method. The corrective translation is simply the optimal translation of the registra-

tion method transformed into the global coordinate system.

On the second level of the hierarchy, only differential rotation parameters for 3-

DOF shoulder, hip, and head joints need to be computed. The rotations are to be

performed around the center of each joint, not around the center of gravity of the
vertex positions. However, it is valid to simply use the start and goal vertex coordi-

nates, x1,i and x2,i, defined with respect to the local joint coordinate system instead of

relative to the centers of gravity. The same algorithm that is part of the registration

method applies for finding the optimal rotation. The least-squares rotation for the

joint is found as the rotation R that minimizes

XN
i

x2;i � Rx1;ik k2: ð9Þ

This energy term can be expanded into

XN
i¼1

x2;ik k2 � 2
XN
i¼1

x2;i � Rx1;i þ
XN
i¼1

x1;ik k2; ð10Þ

which is minimized by maximizing the middle sum. This sum can be maximized by

the same quaternion-based eigenvector decomposition method as previously

described.

On hierarchy level 3, there are four 1-DOF joints (the elbows and the knees). The

body model is designed in such a way that the rotation axis for each of these joints

coincides with the X-axis of the local coordinate system. The optimal rotations are
found using the same procedure as on hierarchy level 2. The 1-DOF constraint is

incorporated by projecting the start and goal vertex positions into the local yz-planes.

In Fig. 5 the different steps of the pose parameter update computation are illus-

trated using an exaggerated flow field for better visualization.
10. Results and validation

The performance of our system was tested on two multi-view video sequences that

were recorded with 8 cameras at a resolution of 320 · 240 pixels. The sequences show

simple gestures that exhibit a large amount of head motion which cannot be accu-

rately recovered using only the silhouette step. All test PCs feature 1.8 GHz Pentium

IV Xeon CPUs with 512 MB of main memory and are equipped with Nvidia



Fig. 5. The pictures from left to right show the silhouette-only model pose with 3D motion field (little

arrows), the model after correction on the first hierarchy level, the second and then the third level. The

lengths of the motion field vectors are exaggerated.
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GeForce3 GPUs. For the different sub-components of the motion capture algorithm

we obtained the following timing results:

For both sequences, the silhouette fitting takes between 3 s and 5 s for each time

step if the implementation on a single PC is used. If the parallel implementation with

five PCs is applied, silhouette fitting times significantly below one second are

achieved for a single time step.
The most time-consuming step in the motion field reconstruction is the computa-

tion of the optical flows in all camera views. The Lucas–Kanade optical flow algo-

rithm takes, on average, 45 s for the processing of one set of 8 input views if four

levels of an image pyramid and a 20 · 20 Gaussian window are used. These numbers

apply if the algorithm is configured to compute scene flow vectors for each model

vertex, and thus 8 optical flow vectors are computed for each vertex. The runtime

of the optical flow computation strongly depends on the chosen parameters.

Speed-ups are gained by reducing the number of image pyramid levels and the size
of the Gaussian neighborhood. For only one level in the pyramid and a 10 · 10-

neighborhood, the optical flows in 8 camera views can be computed in 8 s.

A further acceleration is achieved by computing the scene flows only for a subset

of the model vertices. However, since our focus lies on producing the maximally pos-

sible visual quality, we run the scene flow computation at the highest level of detail.

Our system is flexible enough to incorporate any other optical flow method. The

reconstruction of the 3D motion field from the 2D optical flows, takes on average

0.34 s for each time step.
The results obtained with both sequences show that the motion field update step

can noticeably improve the quality of the reconstructed motion and thus also the

reconstructed 3D video. Two pairs of images in Fig. 6 show the textured and untex-

tured body model side by side. The left pair shows the result that is obtained with

pure silhouette-based motion capture, the right pair shows the result with the en-

hanced algorithm. It is obvious that the improved visual quality of the textured mod-

el, notably in the face, is caused by the more accurate body pose.

In Fig. 6 some more screen-shots of 3D videos are depicted that were generated
with and without motion field correction. As expected the most obvious improve-



Fig. 6. First row: body model with corrective motion field (green arrows) before (l) and after (r) pose

update. Second row: the left image pair shows the textured and untextured body model obtained using

only silhouette fitting. The right pair shows the corresponding result with active motion field correction.

Third and fourth row: the top images show screen shots of 3D videos reconstructed without motion field

correction, the bottom images show visual improvements with active differential pose update.
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ments are visible in the face and on the torso. The silhouette step often cannot ex-

actly recover the head orientation. The additional use of the texture information

can correct for such small errors. Slight changes in torso orientation are also discov-

ered more robustly if the motion field correction step is applied.



Table 1

Differences in PSNR measurements between free-viewpoint videos that are reconstructed with and without

motion field step

Difference in avg. (dB) Max. difference (dB)

Sequence 1 0.33 0.81

Sequence 2 0.35 0.93
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In order to validate the visual improvements caused by the motion field step we

employ a quality measure widely used in research on video encoding. For each time

step of video we compute the peak signal-to-noise-ratio (PSNR) [3] in the luminance

channel between the 3D video rendered from the input camera perspectives and the

segmented recorded input views. On both test sequences, the PSNR is computed for

the 3D videos with and without the corrective motion field step.

The difference in the average PSNR between the corrected and uncorrected free-
viewpoint videos as well as the maximal observed difference for one single time step

of video are summarized in Table 1.

The difference in the average PSNR over all video frames is a measure of recon-

struction quality. A positive difference characterizes an improvement of rendering

quality with respect to the original video frames. We obtained positive differences be-

tween the average PSNRs for both sequences. For one single time step of video the

improvements can even be more significant as it is expressed in the values for the

maximal observed PSNR difference.
It is interesting to observe that, after only small differences at the beginning, later, in

both sequences, the PSNR differences are larger. This confirms the assumption that

the correction step improves model fitting over time. Result movies can be down-

loaded from http://www.mpi-sb.mpg.de/~theobalt/SceneFlowFitting/index.html.
11. Conclusions and future work

In this work, we have presented a new approach for acquisition and rendering

of 3D videos of human actors. We have demonstrated that that a large range of

complex and rapid body motion can be robustly acquired by means of a silhou-

ette-based marker-less motion capture algorithm. In combination with a renderer

that applies a multi-view texture generation method to create realistic surface

appearance, a powerful tool for immersive video production is proposed. We

have demonstrated that the visual quality of the free-viewpoint videos can be fur-

ther enhanced by incorporating texture information into the motion tracking pro-
cess. It was shown empirically and quantitatively that the incorporation of

corrective motion fields into the fitting process yields significant improvements,

and thus, is a worthwhile enhancement to the process of capturing free-viewpoint

video.

In the future, we plan to enhance our approach into a system that can simul-

taneously reconstruct human actors in the foreground of a scene as well as derive

http://www.mpi-sb.mpg.de/~theobalt/SceneFlowFitting/index.html.
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the geometry of the scene background. The concurrent acquisition of motion data

and parametric models of surface appearance for relighting is also an issue. A

body model estimation procedure similar to the one presented in [27] in order

to estimate a skin deformation model from images may also be a worthwhile

enhancement.
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Appendix. Structure of matrix N

The matrix N needed to compute the optimal rotation in a joint is defined as

follows: Let x1 and x2 be two point sets of size n, each point defined via coordinates
(x, y, and z), then a matrix M is defined as follows:

M ¼
Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

2
64

3
75

with

Sxy ¼
Xn

i¼1

x1;iy2;i:

The entries in N are built via arithmetic operations on elements of M:

N ¼ N 1 N 2 N 3 N 4½ �

N 1 ¼

ðSxx þ Syy þ SzzÞ
Syz � Szy

Szx � Sxz

Sxy � Syx

2
6664

3
7775; N 2 ¼

Syz � Szy

ðSxx þ Syy þ SzzÞ
Sxy þ Syx

Szx þ Sxz

2
6664

3
7775;

N 3 ¼

Szx � Sxz

Sxy þ Syx

ð�Sxx þ Syy � SzzÞ
Syz þ Szy

2
6664

3
7775; N 4 ¼

Sxy � Syx

Szx þ Sxz

Syz þ Szy

ð�Sxx � Syy þ SzzÞ

2
6664

3
7775:
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[27] P. Sand, L. McMillan, J. Popović, Continuous capture of skin deformation, in: Proceedings of ACM

SIGGRPAH03, 2003, pp. 578–586.



C. Theobalt et al. / Graphical Models 66 (2004) 333–351 351
[28] J. Starck, A. Hilton, Towards a 3D virtual studio for human appearance capture, in: Proceedings of

Vision, Video and Graphics, 2003, pp. 17–24.

[29] C. Theobalt, J. Carranza, M. Magnor, H. Seidel, A parallel framework for silhouette-based human

motion capture, in: Proceedings of Vision, Modeling and Visualization 2003, Munich, Germany,

2003, pp. 207–214.

[30] C. Theobalt, J. Carranza, M.A. Magnor, H.-P. Seidel, Enhancing silhouette-based human motion

capture with 3D motion fields, in: Proceedings of Pacific Graphics 2003, IEEE Computer Society

Press, Canmore, Canada, 2003, pp. 185–193.

[31] C. Theobalt, M. Li, M. Magnor, H.-P. Seidel, A flexible and versatile studio for synchronized multi-

view video recording, in: Proceedings of Vision, Video and Graphics, 2003, pp. 9–16.

[32] C. Theobalt, M. Magnor, P. Schueler, H.-P. Seidel, Combining 2D feature tracking and volume

reconstruction for online video-based human motion capture, in: Proceedings of Pacific Graphics

2002, 2002, pp. 96–103.

[33] R. Tsai, An efficient and accurate camera calibration technique for 3D machine vision, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR�86), 1986,
pp. 364–374.

[34] S. Vedula, S. Baker, T. Kanade, Spatio-temporal view interpolation, in: Proceedings of the 13th ACM

Eurographics Workshop on Rendering, 2002, pp. 65–75.

[35] S. Vedula, S. Baker, P. Rander, R. Collins, T. Kanade, Three-dimensional scene flow, in: Proceedings

of the 7th IEEE International Conference on Computer Vision (ICCV-99) [7], pp. 722–729.

[36] S. Vedula, S. Baker, S. Seitz, T. Kanade, Shape and motion carving in 6D, in: Proceedings of CVPR,

2000, pp. 592–598.

[37] B. Wilburn, M. Smulski, H.-H.K. Lee, M. Horowitz, The light field video camera, in: Proceedings of

Media Processors 2002, SPIE Electronic Imaging 2002, 2002.

[38] S. Wuermlin, E. Lamboray, O. Staadt, M. Gross, 3D video recorder, in: Proceedings of Pacific

Graphics 2002, IEEE Computer Society Press, 2002, pp. 325–334.


	Combining 3D flow fields with silhouette-based human motion capture for immersive video
	Introduction
	Related work
	The big picture
	Multi-view video acquisition
	Adaptable body model
	Silhouette-based model fitting
	Multi-view texture generation
	Fundamentals of optical flow and its 3D equivalent
	2D optical flow
	3D motion fields

	Body pose update using 3D motion fields
	Differential pose update
	Registration method for pose update


	Results and validation
	Conclusions and future work
	Acknowledgments
	Structure of matrix N
	References


